Isolation and identification of bioactive compounds responsible for the anti-bacterial efficacy of Lotus corniculatus var. São Gabriel

Juliana B. Dalmarco, Eduardo M. Dalmarco, Janaína Koelzer, Moacir G. Pizzolatti, Tânia S. Fröde

Abstract


Lotus corniculatus (Fabaceae) is considered a forage plant utilized as food for ruminants in the south of Brazil. This herb is also actually used to treat intestinal infection in these animals. In our experiments, we evaluated the anti-bacterial activity of crude extract from L. corniculatus var. São Gabriel were assayed against Gram-positive and Gram-negative bacterium. The crude extracted did not show any anti-bacterial activity, but the hexane fraction did on Bacillus cereus (MIC=100 μg/mL) and on Enterococcus faecalis, Listeria monocytogenes, Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter calcoaceticus, and Providencia alcalifaciens (MIC=600, 800 or 1000 μg/mL). The Ethyl acetate fraction (AcOEt) also showed important anti-bacterial activity on Bacillus cereus, E. faecalis, and Acinetobacter calcoaceticus (MIC=800 μg/mL). The oleanolic acid isolated from hexane fraction showed the same effect on Staphylococcus aureus methycillin-resistant (MIC=100 μg/mL), L. monocytogenes (MIC=25 μg/mL), and Bacillus cereus (MIC=25 μg/mL). Further, Kaempferitrin isolated from ethyl acetate fraction has also shown anti-bacterial activity on Shighella flexinerii (MIC=100 μg/mL), Salmonella typhimurium (MIC=100 μg/mL), A. calcoaceticus (MIC=100 μg/mL), E. faecalis (MIC=3.9 μg/mL), and Bacillus cereus (MIC=8.5 μg/mL). This study suggests that L. corniculatus var. São Gabriel have
potential pharmacological property for a new anti-bacterial drug development.
Key words: Anti-bacterial activity, Kaempferitrin, Lotus corniculatus, Oleanolic acid, β-sitosterol.

Full Text:

PDF

References


Yam MF, Asmawi MZ, Basir R. An investigation of the

antiinflammatory and analgesic effects of Orthosiphon stamineus

leaf extract. J Med Food 2008;11:362-8.

Maregesi SM, Pieters L, Ngassapa OD, Apers S, Vingerhoets R,

Cos P, et al. Screening of some Tanzanian medicinal plants from

Bunda district for antibacterial, antifungal and antiviral activities.

J Ethnopharmacol 2008;119:58-66.

Jin YR, Yu JY, Lee JJ, You SH, Chung JH, Noh JY, et al.

Antithrombotic and anti-platelet activities of Korean red ginseng

extract. Basic Clin Pharmacol Toxicol 2007;100:170-5.

Da Silva LL, Nascimento MS, Cavalheiro AJ, Silva DH, Castro-

Gamboa I, Furlan M, et al. Antibacterial activity of labdane

diterpenoids from Stemodia foliosa. J Nat Prod 2008;71:1291-3.

Waghorn GC, Ulyatt MJ, John A, Fisher MT. The effect of condensed

tannins on the site of digestion of amino acids and other nutrients

in sheep fed on Lotus corniculatus L. Br J Nutr 1987;57:115-26.

Wang Y, Douglas GB, Waghorn GC, Barry TN, Foote AG.

Effect of condensed tannins in Lotus corniculatus upon lactation

performance in ewes. J Agric Sci 1996;126:353-62.

Aerts RJ, McNabb WC, Molan A, Brand A, Peters JS, Barry TN.

Condensed tannins from Lotus corniculatus and Lotus pedunculatus

(Rubisco) protein in the rumen differently. J Sci Food Agric

;79:79-85.

Li M, Xu Z. Quercetin in a Lotus leaves extract may be responsible

for antibacterial activity. Arch Pharm Res 2008;31:640-4.

Abdel-Ghani AE, Hafez SS, Abdel-Aziz EM, El-Shazly AM.

Phytochemical and biological studies of Lotus corniculatus var.

Ternuifolius L. Growing Egypt. Alex J Pharm Sci 2001;15:103-8.

Reynaud J, Lussignol M. The flavonoids of Lotus corniculatus. Lotus

Newlett 2005;35:75-82.

Robbins MP, Paolocci F, Hughes JW, Turchetti V, Allison G,

Arcioni S, et al. Sn, a maize bHLH gene, modulates anthocyanin

and condensed tannin pathways in Lotus corniculatus. J Exp Bot

;54:239-48.

Hedqvist H, Mueller-Harvey I, Reed JD, Krueger CG, Murphy

M. Characterisation of tannins and in vitro protein digestibility

of several Lotus corniculatus varieties. Anim Feed Sci Technol

;87:41-56.

Rizk AM, Heiba HI, Ma'ayergi HA, Batanouny KH. Constituents

of plants growing in Qatar. Fitoterapia 1986;57:3-9.

Goverde M, Bazin A, Kéry M, Shykoff JA, Erhardt A. Positive effects

of cyanogenic glycosides in food plants on larval development of

the common blue butterfly. Oecologia 2008;157:409-18.

Harborne JB, Harborne AJ. Phytochemical methods. In: Harborne

JB, editor. A guide to modern techniques of plant analysis, 1st ed.,

London, UK: Chapman and Hall; 1998. p. 40-214.

Hung CY, Yen GC. Extraction and identication of antioxidative

components of hsian-tsao (Mesona procumbens Hemsl.). Lebensm

Wiss Technol 2001;34:306-11.

Urgaonkar S, Shaw JT. Synthesis of kaempferitrin. J Org Chem

;72:4582-5.

Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH.

Algorithms for identification of aerobic Gram-negative and

Gram-positive bacteria. In: Baron EJ, editor. Manual of clinical

microbiology. 3rd ed. Washington, USA: ASM Press; 2003. p.

-700 and 719-79.

Clinical and Laboratory Standards Institute (CLSI). Performance

Standards for Antimicrobial Susceptibility Testing:Eighteenth

Informational Supplement M100-S18. Wayne, PA: Clinical and

Laboratory Standards Institute; 2008.

Rahman M, Kühn I, Rahman M, Olsson-Liljequist B, Möllby R.

Evaluation of a scanner-assisted colorimetric MIC method for

susceptibility testing of gram-negative fermentative bacteria. Appl

Environ Microbiol 2004;70:2398-403.

Machado M, Cechinel-Filho V, Tessarolo R, Mallmann R, Silva CM,

Cruz AB. Potent Antibacterial activity of Eugenia umbelliflora.

Pharm Biol 2005;43:636-9.

Ríos JL, Recio MC. Medicinal plants and antimicrobial activity. J

Ethnopharmacol 2005;100:80-4.

Bosio K, Avanzini C, D’Avolio A, Ozino O, Savoia D. In vitro

activity of propolis against Streptococcus pyogenes. Lett Appl

Microbiol 2000;31:174-7.

Okusa PN, Penge O, Devleeschouwer M, Duez, P. Direct and

indirect antimicrobial effects and antioxidant activity of Cordia

gilletii De Wild (Boraginaceae). J Ethnopharmacol 2007;112:476-81.

Mengoni F, Lichtner M, Battinelli L, Marzi M, Mastroianni CM,

Vullo V, et al. In vitro antibacterial-HIV activity of oleanolic acid

on infected human mononuclear cells. Planta Med 2002;68:111-4.

Horiuchi K, Shiota S, Hatano T, Yoshida T, Kuroda T, Tsuchiya T.

Antimicrobial activity of oleanolic acid from Salvia officinalis and

related compounds on vancomycin-resistant enterococci (VRE).

Biol Pharm Bull 2007;30:1147-9.

Fontanay S, Grare M, Mayer J, Finance C, Duval RE. Ursolic,

oleanolic and betulinic acids: Antibacterial spectra and selectivity

indexes. J Ethnopharmacol 2008;120:272-6.

Kilani S, Ben-Sghaier M, Limem I, Bouhlel I, Boubaker J, Bhouri W,

et al. In vitro evaluation of antibacterial, antioxidant, cytotoxic and

apoptotic activities of the tubers infusion and extracts of Cyperus

rotundus. Bioresour Technol 2008;99:9004-8.

Urgaonkar S, La Pierre HS, Meir I, Lund H, Ray-Chaudhuri D, Shaw

JT. Synthesis of antimicrobial natural products targeting FtsZ:(+/)-

dichamanetin and (+/-)-2' ''-hydroxy-5' '-benzylisouvarinol-B. Org

Lett 2005;7:5609-12.

Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J

Antimicrob Agents 2005;26:343-56.

Piddock LJ, Walters RN, Diver JM. Correlation of quinolone

MIC and inhibition of DNA, RNA, and protein synthesis and

induction of the SOS response in Escherichia coli. Antimicrob Agents

Chemother 1990;34:2331-6.

Vollmer W. The prokaryotic cytoskeleton: A putative target

for inhibitors and antibiotics? Appl Microbiol Biotechnol 2006;

:37-47.

Nazif NM. Phytoconstituents of Zizyphus spina-christi L. fruits and

their microbial activity. Food Chem 2002;76:77-81.




DOI: http://dx.doi.org/10.22377/ijgp.v4i2.130

Refbacks

  • There are currently no refbacks.