Computational docking study of multitarget bioactive compounds in Indonesia traditional herbal medicine for tuberculosis therapy

Sherry Aristyani, Sri Widyarti, Sutiman B. Sumitro

Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang, Indonesia

Abstract

Introduction: Tuberculosis (TB) is one of the leading infectious diseases in the world. It is commonly infected by Mycobacterium tuberculosis (TB) and can rapidly spread through droplet transmission. Poverty and malnutrition cause immunodeficiency, and thus, it increases the risk factor for TB. Indonesia traditional herbal medicine, jamu, has been using for long time to treat diseases involving TB. This research makes new jamu formulation from Curcuma xanthorrhiza Roxb., Tamarindus indica L., Citrus aurantifolia, and Zingiber officinale var. rubrum and analyzes the formulation with docking method. Materials and Methods: Protein targets used were from human matrix metallopeptidase 1 and Src and form MTB PknB and catalase-peroxidase. Compound-target proteins and protein-protein docking were conducted by PatchDock and FireDock. Results and Discussion: The docking results were analyzed and visualized using LigPlot+ and PyMoL. Lipinski’s rule and toxicity were checked by SwissADME and AdmetSAR. The result showed that 6 compounds from 223 compounds (not 222 compounds, but 223 compounds) analysed could play as multitarget compounds inhibiting four target proteins. In addition, two compounds were found which could change the binding location of Src and PknB coproteins. Conclusion: According to the results, the new jamu formulation has the potential to utilize as TB therapy.

Keywords: Jamu, molecular docking, multitarget compounds, tuberculosis

INTRODUCTION

Tuberculosis (TB) is one of the infectious respiratory diseases caused by airborne bacteria, Mycobacterium TB. TB causes main primary high mortality and morbidity in the world, and numerous new TB cases are arised annually. In 2014, it has been recorded that 9.6 million incident cases were discovered.[1] However, more than 95% of death patients of TB occurs in low- and middle-income countries, and it means that there is high correlation between poverty and TB infection.[2] Poverty causes deployment of TB, the majority through (1) living condition like living in the overcrowded place, slum, and poorly ventilated home, (2) prolong delaying checkup, and (3) malnutrition and/or HIV infection.[3] These facts match with TB dissemination case in Indonesia, which the regions with high TB transmission have high populated area, malnutrition cases, and HIV infection.[4] In addition, according to the WHO annotation, the reason of failure TB treatment is caused by the degree of poverty, difficulty to reach medical facilities, lack of medical staff, the high cost of TB drugs, and complicate procedure.[5] Malnutrition has a close link with infection; it causes immunodeficiency and enhances TB risk factor. Based on animal studies, insufficient nutrition intake reduces helper T cell 1 (Th1) cytokine secretion such as interferon-γ, interleukin-2, and tumor necrosis factor-α which had a role as mycobacteria infection control, reduce NO production, and also gain transforming growth factor beta production suppressing inflammation cytokine to eradicate mycobacteria.[6]

Address for correspondence:
Sutiman B. Sumitro, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang, Indonesia. Phone: +62341-554403. E-mail: sutiman@ub.ac.id

Received: 23-05-2018
Revised: 03-09-2018
Accepted: 10-10-2018
The use of common TB medication causes TB cases which have been developing lately. For a long time, common medicine for treating TB has been isoniazid, rifampicin, pyrazinamide, and ethambutol (first-line drug). Unfortunately, these drugs cause rapid evolution and result resistant to MTB. Furthermore, this case leads to multidrug-resistant TB (MDR-TB) and makes TB more serious and difficult to treat.\(^7\) Second-line drugs such as aminoglycosides, polypeptides, fluoroquinolones, thiocyanates, cycloserine, and para-aminosalicylic have been used to treat MDR-TB; however, so far, these drugs cause mutation and emerge extensively drug-resistant TB (XDR-TB) case. XDR-TB is described as MTB not only resistant to first-line drugs but also to second-line drugs.\(^8\) From these reasons, it can be concluded TB therapy focusing only to exterminate bacteria cause mutation and make diseases more severe and hard to cure. Nowadays, for overcoming TB cases, multiple therapies which can eradicate mycobacteria, improve nutrition, and balance immunity and the human system should be developed.

Jamu is Indonesia traditional herbal medicine that has been used for a long time ago in Indonesia community for maintaining health and treating diseases. Jamu is a traditional medication from ancestor and still popular in rural and urban areas.\(^9\) In jamu production, people use various plants which are easy to find in their environment. For resolving TB case, this study tries to make new jamu formulation form Indonesia medical plants that used Indonesia local people to treat TB, Curcuma xanthorrhiza Roxb., Tamarindus indica L., Citrus aurantifolia, and Zingiber officinale var. rubrum. Some reports have shown that all of these plants had the ability as antimicrobial and immunostimulation.\(^10-12\) For analyzing the effect toward TB, in silico docking method was used in this study. The targets protein selected were not only from MTB for eradicating mycobacteria but also from a human for regulating defense mechanism, matrix metalloproteinase 1 (MMP1), tyrosine-protein kinase Src, protein kinase (PknB), and catalase-peroxidase (KatG).

MMPs are a member of zinc-dependent protease that has two conserved domains as a predominant and a catalytic domain. MMPs can degrade components of extracellular matrix-like collagens, laminin, fibronectin, vitronectin, and proteoglycans. MMP activity is controlled by the gene expression and proenyzyme activation. Tissue inhibitor of metalloproteinase is an inhibitor of MMPs. High activity of MMP can induce diverse pulmonary disease caused by extracellular matrix destruction.\(^13\) In TB patients, MMP1 has been found had upregulation, and MTB caused high expression of MMP1. The excessive of MMP1 leads to granuloma degradation, thus causing mycobacteria disseminate to another part of the human body.\(^14,15\)

Src protein-tyrosine kinase, a non-receptor protein-tyrosine kinase, is a proto-oncogene that is important for cell morphology, motility, proliferation, and survival. Src structure contains the SH3 domain, a protein-tyrosine kinase domain, and SH2 domain, C-terminal regulatory tail.\(^16\) PknB is a transmembrane signaling kinase which has a signal recognition domain and an intracellular kinase domain. PknB plays as cell growth and division regulator in MTB. PknB encoded by PknB which is part of the operon carrying cistron coding involved cell shape control.\(^18,19\)

KatG is a multifunctional catalase-peroxynitrite and NADH oxidase. By the KatG enzyme, INH is changed into INH-NAD which can interfere with activation inhibiting NADH-dependent enoyl-ACP reductase (inlA) in mycolic acid biosynthesis process. Mutation in katG and inhA is associated with isoniazid resistance. Reduction of catalase or peroxidase activity is the result of katG mutation in which most common mutation is in S315T. In addition, mutation in inhA causes resistance to isoniazid and ethionamide. InhA mutation occurs commonly in its promoter region and it associates with mono-resistant strains.\(^20\)

MATERIALS AND METHODS

Ligand Preparation

There were 55 compounds of *C. xanthorrhiza* Roxb., 59 compounds of *Z. officinale* var. *rubrum*, 55 compounds of *T. indica* L., and 54 compounds of *C. aurantifolia*. All three-dimensional (3D) structure of the compounds and other 3D chemicals such as mitoxantrone, cyanidin, dasatinib, morin, and isoniazid were obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/).

Protein Preparation

Target proteins used were PknB and KatG from MTB and MMP-1 and Src from human. Protein 3D structures were obtained from Protein Data Bank (http://www.rcsb.org/); the PDB code is as follows: PknB (2FUM), ForkHead Associated A (FhaA) (3PO8), KatG (1SJ2), MMP1 (3SHI), Src (1FMK), and PIK3 (3L54). The controls used were determined by the following: Mitoxantrone-PknB bond, isoniazid-KatG bond, doxycycline-MMP1 bond, and saracatinib-Src bond. The water molecules in proteins were omitted using Discovery Studio 2016 before docking process.

Docking Simulation and Interaction Analysis

Patchdock was used for docking protein-bioactive compounds and complex protein-protein.\(^21,22\) It presents geometry-based molecular docking algorithm and gives geometry shape complementarity score, area, atomic contact energy (ACE), and 3D transformation outputs; nevertheless, the highest geometry shape complementarity score was chosen. Root mean square deviation (RMSD) value 1.5 was...
used for docking protein compounds, and RMSD value 4.0
was used for docking complex protein-protein. For protein-
protein docking, Firedock was used to refine protein-protein
docking. It shows binding energy or global energy value,
attractive and repulsive Van der Waals force value, ACE,
and the contribution hydrogen bounds to global binding
energy (HB), but only the highest binding energy was used
in this study.\cite{23,24} LigPlot was used to analyze the ligand-
protein structure and binding after docking process.\cite{25} This
program showed 2D structure of position and interaction
ligand in protein. The results showed H-bond interactions
and distance, hydrophobic interaction, and external binding.
The result of protein-protein dockings were visualized with
PyMoL.

Chemical Information and Toxicity

Swiss ADME was used to calculate Lipinski’s rule of five.
The toxicity was analyzed with AdmetSAR.\cite{26,27}

RESULTS

Active Compound Docking

According to the docking screening of 223 compounds’ result,
it has been chosen highest ten top best scores of each protein-
ligand docking by PatchDock [Table 1]. 17 compounds were
selected based on ten highest score from docking result. Each
of the compounds had various pattern scores while docked
with target proteins. Phenol compounds such as curcumin
and demethoxycurcumin had supreme binding energy score
while docked with MTB PknB and KatG and human MMP1,
whereas an organic compound, oleic acid, had the first score
when docked with Src of human. Moreover, the docking
results presented that curcumin, demethoxycurcumin, phytol,
oleic acid, and linoleic acid [Figure 1] could bind with four
target proteins; it might be concluded that these compounds
were multitarget compounds. For more exploring, binding
interaction and position were analyzed with LigPlus.

Active Compounds - human Proteins

According to Figure 2, the compounds bound with a catalytic
domain which is in residues of 106–261 MMP1.\cite{28} Curcumin,
demethoxycurcumin, and phytol [Figure 2a,b,d] had one
external binding, respectively, with Asn 143, Gln 135, and
Thr 148. In addition, curcumin had one hydrogen bond
interaction with Tyr201 (2.76 Å), while demethoxycurcumin
[Figure 2b] had two hydrogen binding interactions with
Phe 149 (2.24 Å) and Arg 202 (2.72 Å). These interaction
numbers were less than the control that had three hydrogens
bound in Asp124 (2.97 Å) and Ser 142 (2.23 Å and 3.33 Å).
In contrast, 8-gingerol, oleic acid, and linoleic acid
[Figure 2c,e,f] had none of the external binding and hydrogen
binding, and it tended to be hydrophobic while contact with
MMP1.

When compounds docked with Src, phenol compounds,
curcumin, demethoxycurcumin, and 8-gingerol
[Figure 3a-c] had the same interaction residues with control
[Figure 3f], Thr 247, Phe 150, Leu 161, Ile 153, and Val
399. Moreover, these compounds also interacted with Src
in SH3 domain (83–142) and SH3-SH2 interaction domain
(142–146).\cite{29,30} Curcumin and demethoxycurcumin had
one hydrogen binding, Lys104 (2.07 Å), Val 339 (3.19 Å),
and one external binding Lys 104 and Val 339. 8-gingerol
and control had one hydrogen binding interaction with Thr
247 (3.02 Å) and Asn397 (2.84 Å). However, phytol and
oleic acid had the same position when interacting with Src,
Asn 391, Leu 273, Ser 345, Asp 404, Leu 393, and Asp 348.
Oleic acid had a hydrogen binding with Asp 386 (2.97 Å),
while phytol and linoleic acid tended to be hydrophobic
while interacting with Src.

Active Compounds - MTB Proteins

Based on Figure 4, active compounds had the same position
with control, eventhough the binding scores were lower than
the control. All the compounds are contact with N-terminal
lobes of PknB, Leu 17, Gly 18, Val 25, Ala 38, Met 92,
Glu 93, and Val 95 and C-terminal of PknB lobes (exclude
curcumin), Met145, and Met155. It has been evident that the
connection in this position could suppress the activity of PknB
in MTB.\cite{31} Curcumin [Figure 4a] had two hydrogen binding
with Thr149 (2.81 Å) and Ser147 (3.23 Å); 8-gingerol,
phytol, and oleic acid [Figure 4c and d] had one hydrogen
binding, respectively; Glu 93 (3.15 Å), Asn143 (2.67 Å), and
Asp (102), control only had an external binding with Asp126,
and linoleic acid had none of the hydrophobic and external
binding.

In KatG docking term, the result described that the compounds
had different location binding sites [Figure 5]. Curcumin and
control [Figure 5a and g] had interaction with Gly 421,
Asp 440, Gln 439, and Gly 490, demethoxycurcumin and
8-gingerol interacted with Glu 709, Arg 705, Arg 145, Arg 128,

![Figure 1: Active compounds of (a) curcumin, (b) demethoxycurcumin, (c) 8-gingerol, (d) phytol, (e) oleic acid, (f) linoleic acid](image-url)
Aristyani, et al.: Docking study of Indonesia herbal medicine

Gly 297, and Glu 289, whereas oleic and linoleic acid had the same position to connect with Asn 44, Lys 46, Glu 195, Asn 35, Gly 32, Gln 36, Gly 33, and Arg 42. Demethoxycurcumin had three hydrogen bindings with Ser 700 (2.81 Å), Asn 41 (3.04 Å), and Tyr 608 (2.52 Å); 8-gingerol, oleic acid, and linoleic acid had a hydrogen bindings, respectively, with Glu 709 (2.87 Å), Gln 36 (2.44 Å), and Gln 36 (3.01 Å); curcumin, linoleic acid, and control had an external binding, but phytol had distinct position binding with others and it only had hydrophobic interaction with KatG.
Protein Docking

In Src and PknB term, binding score with control was higher than with active compounds [Table 1], and for more understanding this case, protein docking between protein target-another with downstream protein was conducted. Src was docked with phosphatidylinositide 3-kinases (PI3K), a protein signal transducer phosphorylating the inositol group of phosphoinositides. Src-PI3K complex can active the AKT/mTOR pathway involving negative regulator of autophagy, and it has been shown that inhibitor of Src-PIK3 proven to inhibit the survival of MTB.\(^{17,32}\) However, based on the docking result [Table 2], the global energy value of control was lower (−41.29 kcal/mol) than phytol (−36.43 kcal/mol) and oleic acid (−38.88 kcal/mol). It was assumed that phytol and oleic acid might be a better inhibitor than saracatinib. PknB was docked with FhaA, the substrate of Ser/Thr protein kinases. It was reported that there was an interaction between PknB and FhaA for MTB growing process.\(^{33}\) In addition according to the results, it showed that all of the complexes had same value except complex protein with phytol [Table 2], it had the lowest global energy, indicating that it had robust binding rather than the other complexes. Furthermore, in Src term, according to the visualization of protein docking complex protein with phytol and oleic acid, these compounds could change the conformation of the complex protein [Figure 6]. Not only

![Figure 2: Matrix metalloepitidase 1 - active compounds, (a) curcumin, (b) demethoxycurcumin, (c) 8-gingerol, (d) phytol, (e) oleic acid, (f) linoleic acid, (g) control](image)

![Figure 3: SRC - active compounds, (a) curcumin, (b) demethoxycurcumin, (c) 8-gingerol, (d) phytol, (e) oleic acid, (f) linoleic acid, (g) control](image)
changing the conformation but also the binding location was different with the control which had the same position with other compounds such as curcumin, demethoxycurcumin, and 8-gingerol. However in PknB case, only phytol could change the conformation of PknB and FhaA. Phytol also had a different position when interacting with PknB, and it seemed that phytol interacts with a distinct chain of PknB.

Lipinski’s Rule and Toxicity

The value of Lipinski’s score and toxicity could be seen in Table 3, and it represented that phytol, oleic acid, linoleic acid, mitoxantrone, doxycycline, and saracatinib had a violation even it still allowed in Lipinski’s rule. Isoniazid and mitoxantrone had a high probability to cause the mutation in bacteria, and it might induce the bacteria resistance with drugs. All of the compounds showed that it did not induce carcinogen.

DISCUSSION

C. xanthorrhiza Roxb., *Zingiber officinale* var. *rubrum*, *T. indica* L., *Ocimum basilicum*, and *C. aurantifolia* are used by Indonesia local people to treat TB. However, not only in Indonesia but also in other counties use these plants for TB. Furthermore, these plants and the constituents have been evaluated to inhibit the cells growth and infection of MTB.[34-36] According to the result, the plants consisted of six compounds: curcumin, demethoxycurcumin, 8-gingerol, phytol, oleic acid, and linoleic acid which could act as multitarget compounds, inhibiting four targets proteins.

Nowadays, multitarget drug is one possible way that can be developed to overcome TB. Multitarget compounds can target many proteins and it is more effective rather than combination compounds with single target, respectively. There are three types of multitarget inhibitors that can design...
Table 3: Ligand property and toxicity

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Lipinski’s rule</th>
<th>AMES toxicity</th>
<th>Probability</th>
<th>Carcinogen toxicity</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curcumin</td>
<td>Yes; 0 violation</td>
<td>Non-AMES toxic</td>
<td>0.9132</td>
<td>Non-carcinogens</td>
<td>0.8689</td>
</tr>
<tr>
<td>Demethoxycurcumin</td>
<td>Yes; 0 violation</td>
<td>Non-AMES toxic</td>
<td>0.7747</td>
<td>Non-carcinogens</td>
<td>0.8666</td>
</tr>
<tr>
<td>8-Gingerol</td>
<td>Yes; 0 violation</td>
<td>Non-AMES toxic</td>
<td>0.7697</td>
<td>Non-carcinogens</td>
<td>0.9121</td>
</tr>
<tr>
<td>Phytol</td>
<td>Yes; 1 violation: MLOGP>4.15</td>
<td>Non-AMES toxic</td>
<td>0.9132</td>
<td>Non-carcinogens</td>
<td>0.5055</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>Yes; 1 violation: MLOGP>4.15</td>
<td>Non-AMES toxic</td>
<td>0.9674</td>
<td>Non-carcinogens</td>
<td>0.6568</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>Yes; 1 violation: MLOGP>4.15</td>
<td>Non-AMES toxic</td>
<td>0.9674</td>
<td>Non-carcinogens</td>
<td>0.6568</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>Yes; 0 violation</td>
<td>AMES toxic</td>
<td>0.8557</td>
<td>Non-carcinogens</td>
<td>0.7514</td>
</tr>
<tr>
<td>Mitoxantrone</td>
<td>Yes; 1 violation: NH or OH>5</td>
<td>AMES Toxic</td>
<td>0.9108</td>
<td>Non-carcinogens</td>
<td>0.8742</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>Yes; 1 violation: NH or OH>5</td>
<td>Non-AMES toxic</td>
<td>0.9132</td>
<td>Non-carcinogens</td>
<td>0.8632</td>
</tr>
<tr>
<td>Saracatinib</td>
<td>Yes; 1 violation: MW>500</td>
<td>Non-AMES toxic</td>
<td>0.5</td>
<td>Non-carcinogen</td>
<td>0.9215</td>
</tr>
</tbody>
</table>

for treating infectious diseases: (1) Series inhibitor, which can inhibit proteins in the same metabolic pathway; (2) parallel inhibitor, which can inhibit proteins unrelated mechanism; and (3) network inhibitor, which is a combination of series inhibitor and parallel inhibitor. Recently, scientists design new multitarget inhibitor for TB.

Recently, scientists design new multitarget inhibitor for TB called SQ109. It has been reported that could inhibit transporter proteins, MmpL3, manauquinone biosynthesis and ATP synthesis. Nevertheless, it will not effective when only targeting the virulence factor. Otherwise, development of mycobacteria dissemination is also caused by imbalance immune system or other human mechanisms.

From previous studies, oleic acid and linoleic acid could be selective inhibitor of enoyl-acyl carrier protein reductase (FabI) which takes apart in fatty acid synthesis in bacteria. Curcumin has been reported to induce the activation of JNK pathway to activate apoptosis in macrophage. 8-gingerol could inhibit mycobacteria survival through its lipophilicity characteristic. Phytol has been also shown that could suppress the mycobacteria infection. Moreover, all of these compounds were shown to attach in the catalytic domain of MMP1, and these indicated disturbed catalytic activity of MMP1 to break collagen which is constituting granuloma. Curcumin, linoleic acid, oleic acid, and phytol have been evaluated which could also suppress the expression of MMP1 gene. In Src inhibition, all of the compounds had a various effect toward the Src-PIK3 complex. Curcumin has been reported which could suppress the activation signaling Src/PIK3 pathway for inducing apoptosis.

CONCLUSION

The novel formulation of jamu for TB therapy contained six compounds, curcumin, demethoxycurcumin, 8-gingerol, phytol, oleic acid, and linoleic acid could bind all of the target proteins. According to docking complex, phytol and oleic acid could change the position of Src while a bond
with PIK3, and in addition, phytol also could change FhaA position while docked with PknB. This novel discovery should be analyzed with advanced simulation to explore the conformation complex. Based on the results, this novel formulation could be TB medication; however, it should be analyzed by in vitro and in vivo research to ensure the effect.

ACKNOWLEDGMENT

The authors would like to thank Syahputra Wibowo for giving guidance during this research and Science Complex city working group, Department of Biology, University of Brawijaya, for also giving a lot of support and suggestions in this research.

REFERENCES

Source of Support: Nil. Conflict of Interest: None declared.